메가밍크스
"오늘의AI위키"의 AI를 통해 더욱 풍부하고 폭넓은 지식 경험을 누리세요.
1. 개요
메가밍크스는 정십이면체 모양의 퍼즐로, 1980년대 초 여러 사람에 의해 독립적으로 고안되었으며, 우베 메페르트가 '메가밍크스'라는 이름으로 판매하면서 널리 알려졌다. 12개의 면과 중앙 조각, 모서리 조각, 가장자리 조각으로 구성되어 있으며, 6색 또는 12색 변형이 있다. 루빅스 큐브와 유사한 해법을 사용하며, 마지막 층은 복잡한 알고리즘을 통해 맞춘다. 20개의 모서리와 30개의 면을 가지고 있으며, 12색 메가밍크스의 경우 약 1.01 x 10^68가지의 조합이 가능하다. 킬로밍크스, 기가밍크스 등 다양한 변형이 존재하며, 세계 큐브 협회(WCA)에서 공식 기록을 인정한다.
더 읽어볼만한 페이지
- 조합 퍼즐 - 알렉산더의 별
알렉산더의 별은 수학자 애덤 알렉산더가 고안하여 특허를 취득하고 판매된 3차원 퍼즐로, 조각들을 재배열하여 각 쌍의 평행 평면이 단일 색상으로 구성되도록 하는 것을 목표로 하며 100대 게임 중 하나로 선정되기도 했다. - 조합 퍼즐 - 피라몰픽스
피라몰픽스는 피라밍크스와 비슷하지만, 모서리 조각의 변형으로 회전 시 모양이 바뀌는 특수한 2×2×2 큐브 퍼즐로, 색상과 모양을 섞은 후 각 면이 하나의 색상으로 이루어진 정사면체 형태로 되돌리는 것이 목표이며 3,674,160가지의 조합을 가진다. - 루빅스 큐브 - 슈퍼플립
슈퍼플립은 루빅스 큐브의 특정 상태를 의미하며, 슈퍼플립 알고리즘을 적용하면 큐브의 방향에 관계없이 동일한 배치를 얻을 수 있고, 자기 역변환이며 다른 모든 알고리즘과 교환 가능하다. - 루빅스 큐브 - 루비크 에르뇌
헝가리의 조각가이자 건축가, 발명가인 루비크 에르뇌는 루빅 큐브를 발명하여 세계적인 인기를 얻었으며, 건축학 교수, 루비크 스튜디오 설립, 헝가리 공학 아카데미 회장 역임 등 다양한 분야에서 활동하고 있다. - 퍼즐 - 다른 그림 찾기
다른 그림 찾기는 거의 동일한 두 그림에서 시각적 비교 등을 통해 서로 다른 부분을 찾아내는 퍼즐이다. - 퍼즐 - 몬티 홀 문제
몬티 홀 문제는 세 개의 문 중 하나를 선택한 후 진행자가 상품이 없는 문을 열어 보여줄 때, 선택을 바꾸는 것이 유리한지를 묻는 확률 문제로, 직관과 달리 선택을 바꾸는 것이 당첨 확률을 높이는 전략임을 보여주는 확률 역설이며, 의사 결정 방식에 대한 통찰을 제공한다.
| 메가밍크스 |
|---|
2. 역사
메가밍크스는 1980년대 초 여러 사람들에 의해 독립적으로 고안되었으며, 여러 회사에서 약간씩 다른 디자인으로 생산되었다. 독일의 우베 메페르트(Uwe Mèffert)는 관련 특허권을 구매하여 자신의 퍼즐 가게에서 '메가밍크스'라는 이름으로 판매하기 시작했다.[1] 크리스토프 반델로(Christoph Bandelow) 박사가 고안한 '헝가리 슈퍼노바'로도 알려져 있다.[2] 반델로 박사의 버전이 먼저 출시되었고, 이후 메페르트의 메가밍크스가 출시되었다. 두 퍼즐은 비율이 약간 다르다.
메가밍크스는 정십이면체 모양으로 제작되었으며, 12개의 면과 중앙 조각, 20개의 모서리 조각, 30개의 가장자리 조각으로 구성되어 있다. 각 면의 중앙 조각은 단일 색상을 가지고 있으며, 이는 퍼즐이 풀린 상태에서 해당 면의 색상을 나타낸다. 가장자리 조각은 두 가지 색상을, 모서리 조각은 세 가지 색상을 가진다. 각 면에는 중앙 조각, 5개의 모서리 조각, 5개의 가장자리 조각이 포함되어 있다. 모서리 조각과 가장자리 조각은 인접한 면과 공유된다. 면 중심은 제자리에서만 회전할 수 있지만, 다른 조각들은 면 중심을 중심으로 면 레이어를 돌려 배열을 바꿀 수 있다.
메가밍크스의 해법은 루빅스 큐브의 해법과 유사하게, 한 면을 먼저 맞춘 후 나머지 면들을 순차적으로 맞춰나가는 방식이 일반적이다. 우선 한 면(주로 흰색)에 "별" 모양을 만들고, 각 조각이 인접한 중심 색상과 올바르게 짝을 이루도록 한다. 이는 루빅스 큐브의 초급자 해법에서 "흰색 십자가"를 맞추는 것과 유사하다.
메가밍크스는 20개의 모서리와 30개의 면을 가지고 있다. 루빅스 큐브와 달리 메가밍크스에서는 패리티 상황이 불가능하여, 두 종류의 조각 모두 짝수 순열만 가능하다. 모서리 배열은 20!/2가지, 방향은 319가지, 면 배열은 30!/2가지, 뒤집는 방법은 229가지이다.
메가밍크스는 여러 제조업체에서 다양한 형태로 생산되며, 구조, 크기, 무게, 색상 등이 변형된 다양한 제품이 존재한다.[4] [5][6][7]
3. 구조 및 특징
메가밍크스에는 두 가지 주요 버전이 있다. 6색 변형은 루빅스 큐브에 공통적인 6가지 색상(흰색, 노란색, 파란색, 녹색, 빨간색, 주황색)을 사용하며, 마주보는 면은 같은 색상을 갖는다. 12색 변형은 퍼즐의 각 면에 고유한 색상을 사용한다. 가장 일반적인 12색 구성은 흰색을 시작으로 노란색, 짙은 파란색, 빨간색, 짙은 녹색, 보라색으로 둘러싸여 있다. 이 면들의 맞은편에는 각각 회색, 베이지색, 밝은 파란색, 주황색, 밝은 녹색, 분홍색이 있다. 검은색은 흔히 사용되는 대체 면 색상으로, 일반적으로 마지막 레이어에서 풀리는 회색을 대체하여 색상 대비를 향상시키거나, 흰색 면과 두 개의 이웃(빨간색과 녹색)을 공유하여 특정 조명 조건에서 조각 식별을 어렵게 만들 수 있는 베이지색을 대체한다. 12색 메가밍크스는 공식 WCA 대회에서 유일하게 허용되는 유형이며(각 면이 고유한 색상을 갖는 한 색상 구성 변형이 허용됨), 따라서 6색 버전보다 훨씬 더 인기가 많다.[1]
4. 해법
그 후, 5개의 흰색 모서리 조각을 제자리로 이동시키는데, 각 모서리 조각은 시작 면에서 반대편에 있는 적절한 모서리 조각과 짝을 이룬다. 별, 처음 다섯 모서리, 그리고 처음 다섯 모서리는 3x3 큐브와 유사하게 "처음 두 층"으로 불린다. 다음으로, 퍼즐의 적도를 중심으로 모서리 및 가장자리 조각을 연결하고 배치하는 "두 번째 두 층" 단계를 진행한다. 이 과정은 일반적으로 직관적으로 수행되며, 조각을 이동시키려는 위치에 따라 퍼즐 면을 돌리는 방식으로 진행된다.
마지막으로, 시작 면의 반대쪽 면(주로 회색)인 "마지막 면"을 맞추게 된다. 이 단계에서는 해결된 하위 층을 건드리지 않고 마지막 층의 조각을 정해진 방식으로 뒤집거나 회전시키고, 재정렬하기 위해 복잡한 이동 순서, 즉 "알고리즘"이 필요하다. 이 알고리즘은 루빅스 큐브에서 사용되는 알고리즘과 유사하지만, 각 면에 여분의 면이 있어 회전이 가능하다는 점을 고려해야 한다. "초급자" 해법에서는 3~6개의 이동으로 구성된 4~5개의 알고리즘을 암기하여 마지막 층의 모서리 조각을 맞춘다. 더 복잡한 알고리즘은 더 길고 다양한 고유 시퀀스를 암기해야 하지만, 더 효율적이고 빠르게 마지막 층을 맞출 수 있다.
6색 메가밍크스는 반대쪽 면의 색상이 중복되기 때문에 모서리 조각이 시각적으로 동일한 쌍으로 나타난다. 이들은 패리티 관계에 의해 수학적으로 묶여 있으며, 교환된 모서리 쌍의 수는 항상 짝수이다. 따라서 겉보기에는 동일해 보이는 모서리 쌍이 서로 교환되어 풀리지 않는 경우가 발생할 수 있다. 이 경우 '동일한' 모서리의 단일 쌍을 교환하여 패리티 문제를 해결한 후 나머지 퍼즐을 복원해야 한다. 12색 메가밍크스에서는 모든 모서리가 구별되므로 이러한 문제가 발생하지 않는다.
5. 조합의 수
:
전체 경우의 수는 100 669 616 553 523 347 122 516 032 313 645 505 168 688 116 411 019 768 627 200 000 000 000 000 (대략 짧은 척도로 101언비질리언 또는 긴 척도로 101언데실리언)이다.
6색 메가밍크스에서는 동일한 색상의 모서리가 거울상이므로 구별할 수 없다. 15쌍의 동일한 면이 존재하는데, 이 15쌍을 모두 교환하는 것은 불가능하다. 따라서 214의 축소 계수가 적용된다.
:
전체 경우의 수는 6 144 385 775 971 883 979 645 753 925 393 402 415 081 061 792 664 780 800 000 000 000 (짧은 척도로 대략 6.1비질리언 또는 긴 척도로 6.1데실리어드)이다.
12색 메가밍크스는 약 1.01 x 1068가지, 6색 메가밍크스는 약 6.14 x 1063가지의 조합 수를 가진다.
6. 변형
다양한 수의 레이어를 가진 유사한 십이면체 퍼즐이 많이 있으며, 대부분은 퍼즐 이름의 "메가"를 다른 미터법 접두사로 변경한다. 다음은 그 예시이다.이름 레이어 수 킬로밍크스 2 마스터 킬로밍크스 4 기가밍크스 5 엘리트 킬로밍크스 6 테라밍크스 7 로얄 킬로밍크스 8 페타밍크스 9 엑사밍크스 11 제타밍크스 13 요타밍크스 15 아틀라스밍크스 (쿼타밍크스) 19
이 외에도 다음과 같은 다양한 변형 퍼즐이 존재한다.
7. 공식 기록

세계큐브협회(WCA) 공인 메가밍크스 종목 공식 기록은 다음과 같다. (2024년 5월 기준)
- 단일 풀이 세계 기록은 아르헨티나의 레안드로 마르틴 로페즈가 2024년 Di Tella Inspira에서 세운 23.18초이다.[11]
- 5회 평균 풀이 (최고 기록과 최저 기록 제외) 세계 기록은 아르헨티나의 레안드로 마르틴 로페즈가 2023년 Nacionales Argentinas에서 세운 26.84초이다.[11]
7. 1. 주요 선수 (단일 기록)
| 이름 | 최고 기록 | 대회 |
|---|---|---|
| Leandro Martín López|레안드로 마르틴 로페즈es | 23.18초 | 디 텔라 인스피라 2024 |
| Тимофей Тарасенко|티모페이 타라센코ru | 23.45초 | 루빅스 WCA 아시안 챔피언십 2024 |
| Tristan Chua Yong|트리스탄 추아 용중국어 | 23.77초 | 싱가포르 빅 큐브 2024 |
| 알렉세이 시냐빈 | 25.21초 | 뉴잉글랜드 챔피언십 2023 |
| Juan Pablo Huanqui|후안 파블로 환키es | 25.24초 | 리마 쿠베라노 2022 |
7. 2. 주요 선수 (평균 기록)
| 이름 | 최고 평균 기록 | 대회명 | 기록 |
|---|---|---|---|
| 레안드로 마르틴 로페스 (아르헨티나) | 26.84초 | 아르헨티나 내셔널 2023 | (25.22), 26.31, 26.55, 27.67, (28.15)[13] |
| 트리스탄 추아 용 (싱가포르) | 26.92초 | 싱가포르 마스터스 2023 | 28.20, 25.69, 26.87, (25.21), (DNF)[13] |
| 우쯔유 (중국) | 26.96초 | 선전 오픈 2023 | 27.13, (29.81), 25.71, (25.28), 28.04[13] |
참조
[1]
웹사이트
Megaminx
https://www.jaapsch.[...]
[2]
웹사이트
TwistyPuzzles.com > Museum > Search
https://www.twistypu[...]
[3]
웹사이트
'Records | World Cube Association'
https://www.worldcub[...]
[4]
웹사이트
'WCA Regulations | World Cube Association'
https://www.worldcub[...]
2023-07-28
[5]
웹사이트
Se pensate che il cubo di rubik sia difficile non avete ancora visto: megaminx, gigaminx, teraminx e petaminx!
http://www.chaosotto[...]
[6]
웹사이트
The Petaminx
https://www.youtube.[...]
2009-02-28
[7]
웹사이트
Atlasminx World Record (former)
https://www.youtube.[...]
2021-08-16
[8]
웹사이트
Minx Of Madness (World Record)
https://www.youtube.[...]
2022-05-10
[9]
서적
'The Cube: The Ultimate Guide to the World’s Best Selling Puzzles'
Black Dog & Leventhal Publishers
[10]
웹사이트
Number of Positions of Generalized Twisty Polyhedra
http://michael-gottl[...]
2004-02-27
[11]
웹사이트
Records | World Cube Association
https://www.worldcub[...]
[12]
웹사이트
Official Megaminx Ranking Single
https://www.worldcub[...]
[13]
웹사이트
Official Megaminx Ranking Average
https://www.worldcub[...]
[14]
웹사이트
Gigaminx and Teraminx
http://www.chaosotto[...]
[15]
Youtube
Video of Petaminx
https://www.youtube.[...]
[16]
Youtube
Video of The Atlasminx
https://www.youtube.[...]
[17]
웹인용
Minx Of Madness (World Record)
https://www.youtube.[...]
2022-05-13
[18]
웹사이트
Jaap's puzzle page, Megaminx
http://www.jaapsch.n[...]
[19]
웹사이트
twistypuzzles.com, Hungarian Supernova
http://www.twistypuz[...]
본 사이트는 AI가 위키백과와 뉴스 기사,정부 간행물,학술 논문등을 바탕으로 정보를 가공하여 제공하는 백과사전형 서비스입니다.
모든 문서는 AI에 의해 자동 생성되며, CC BY-SA 4.0 라이선스에 따라 이용할 수 있습니다.
하지만, 위키백과나 뉴스 기사 자체에 오류, 부정확한 정보, 또는 가짜 뉴스가 포함될 수 있으며, AI는 이러한 내용을 완벽하게 걸러내지 못할 수 있습니다.
따라서 제공되는 정보에 일부 오류나 편향이 있을 수 있으므로, 중요한 정보는 반드시 다른 출처를 통해 교차 검증하시기 바랍니다.
문의하기 : help@durumis.com