메이저 꼬임 정리
"오늘의AI위키"의 AI를 통해 더욱 풍부하고 폭넓은 지식 경험을 누리세요.
1. 개요
메이저 꼬임 정리는 유리수체에 대해 정의된 타원곡선의 유리점들의 꼬임 부분군을 분류하는 정리이다. 이 정리에 따르면 가능한 꼬임 부분군은 순환군 (n=1,2,...,9,10,12) 또는 (n=1,2,3,4) 형태이다. 배리 메이저가 1978년에 이 정리를 증명했다.
더 읽어볼만한 페이지
- 타원곡선 - 모델-베유 정리
모델-베유 정리는 대수적 수체 K 위에서 정의된 아벨 다양체 A의 K-유리점들이 이루는 군 A(K)가 유한 생성 아벨 군이라는 정리이며, 앙리 푸앵카레가 문제를 제기하고 루이스 모델과 앙드레 베유가 일반화했지만 랭크 계산 문제 등 해결되지 않은 과제가 남아있다. - 수론 정리 - 페르마의 마지막 정리
페르마의 마지막 정리는 3 이상의 정수 n에 대해 xⁿ + yⁿ = zⁿ을 만족하는 양의 정수 x, y, z는 존재하지 않는다는 정리이며, 앤드루 와일스가 모듈러성 정리를 이용하여 1995년에 증명했다. - 수론 정리 - 라그랑주 네 제곱수 정리
라그랑주 네 제곱수 정리는 모든 양의 정수를 네 개의 정수 제곱수의 합으로 나타낼 수 있다는 정리이다. - 대수적 수론 - 아이디얼
아이디얼은 유사환에서 환의 원소와의 곱셈에 대해 닫혀 있는 부분군으로, 왼쪽, 오른쪽, 양쪽 아이디얼로 나뉘며 가환환에서는 세 개념이 일치하고, 환 준동형사상의 핵으로 나타나 잉여환을 정의하는 데 사용되며, 아이디얼 수 개념에서 유래하여 추상대수학의 주요 개념으로 확장되었다. - 대수적 수론 - 밀너 환
밀너 환은 체 위의 가역원군으로 정의되는 등급환으로, 각 등급 성분인 밀너 K군은 대수적 K-이론, 고차 류체론, 갈루아 코호몰로지, 에탈 코호몰로지, 이차 형식 등 여러 수학 분야와 연결되는 심오한 추측들과 연관된다.
메이저 꼬임 정리 |
---|
2. 정의
유리수체 에 대하여 정의된 타원곡선 의 유리점들의 집합 는 모델-베유 정리에 따라 유한 생성 아벨 군을 이룬다. 유한 생성 아벨 군의 경우, 항상 차수가 무한대인 원소들을 버리고 꼬임 부분군만을 남길 수 있다. '''메이저 꼬임 정리'''는 이 가능한 꼬임 부분군들을 분류한다.
2. 1. 가능한 꼬임 부분군
- 순환군 (. 11은 불가능)
- ()
3. 역사
배리 메이저가 1978년 증명하였다.[1]
본 사이트는 AI가 위키백과와 뉴스 기사,정부 간행물,학술 논문등을 바탕으로 정보를 가공하여 제공하는 백과사전형 서비스입니다.
모든 문서는 AI에 의해 자동 생성되며, CC BY-SA 4.0 라이선스에 따라 이용할 수 있습니다.
하지만, 위키백과나 뉴스 기사 자체에 오류, 부정확한 정보, 또는 가짜 뉴스가 포함될 수 있으며, AI는 이러한 내용을 완벽하게 걸러내지 못할 수 있습니다.
따라서 제공되는 정보에 일부 오류나 편향이 있을 수 있으므로, 중요한 정보는 반드시 다른 출처를 통해 교차 검증하시기 바랍니다.
문의하기 : help@durumis.com