맨위로가기

알론조 처치

"오늘의AI위키"는 AI 기술로 일관성 있고 체계적인 최신 지식을 제공하는 혁신 플랫폼입니다.
"오늘의AI위키"의 AI를 통해 더욱 풍부하고 폭넓은 지식 경험을 누리세요.

1. 개요

알론조 처치는 20세기 미국의 저명한 수학자이자 논리학자이다. 1903년 워싱턴 D.C.에서 태어나 프린스턴 대학교에서 박사 학위를 받았으며, 람다 대수와 처치-튜링 명제를 통해 컴퓨터 과학과 논리학 발전에 기여했다. 그는 1936년 앨런 튜링의 정지 문제보다 앞서 "결정 불가능한 문제"의 존재를 증명했으며, 43년간 『기호 논리학 저널』 편집자로 활동했다. 1995년 사망했으며, 람다 계산법, 처치-튜링 명제, 처치의 정리, 『기호 논리학 저널』 편집, 저서 『수학 논리학 입문』 등을 통해 학문적 업적을 남겼다.

더 읽어볼만한 페이지

  • 캘리포니아 대학교 로스앤젤레스 - 랜디 셰크먼
    랜디 셰크먼은 세포 내 소포 수송 기전 연구로 2013년 노벨 생리학·의학상을 수상했으며, 효모 유전학을 이용해 단백질 분비 과정을 연구하고 학술지 출판 개혁을 주장하며 파킨슨병 연구에도 참여한다.
  • 캘리포니아 대학교 로스앤젤레스 - 줄리언 슈윙거
    줄리언 슈윙거는 양자 전기역학 연구로 리처드 파인만, 도모나가 신이치로와 함께 1965년 노벨 물리학상을 공동 수상했으며, 강한 전장 내에서 진공으로부터 입자-반입자 쌍생성을 최초로 예측한 미국의 이론 물리학자이다.
  • 미국의 논리학자 - 에밀 포스트
    에밀 포스트는 폴란드 태생 미국 수학자이자 논리학자로, 계산 이론과 재귀 이론에 기여했으며, 포스트-튜링 기계 개발, 포스트 대응 문제, 다항 연산 그룹 이론 연구 등을 수행했다.
  • 미국의 논리학자 - 리처드 제프리
    리처드 제프리는 베이즈주의적 접근 방식을 발전시킨 미국의 철학자이며, 급진적 확률주의를 옹호하고 제프리 조건화를 제안했으며, MIT, 스탠퍼드 대학교 등에서 교직을 맡았다.
  • 캘리포니아 대학교 로스앤젤레스 교수 - 버트런드 러셀
    버트런드 러셀은 20세기 분석철학의 기초를 다지고 수학의 논리적 환원을 시도한 영국의 철학자, 논리학자, 수학자, 역사가, 사회 비평가, 정치 운동가로, 평화 운동에 참여했으며 노벨 문학상을 수상하여 여러 분야에 영향을 미쳤다.
  • 캘리포니아 대학교 로스앤젤레스 교수 - 윌러드 리비
    윌러드 리비는 방사성 탄소 연대 측정법을 개발하여 1960년 노벨 화학상을 수상한 미국의 물리화학자로, 맨해튼 계획 참여, 미국 원자력 위원회 활동, UCLA 교수 재직 등 다양한 업적을 남겼다.
알론조 처치 - [인물]에 관한 문서
기본 정보
알론조 처치
알론조 처치
이름알론조 처치
출생일1903년 6월 14일
출생지미국 워싱턴 D.C.
사망일1995년 8월 11일
사망지미국 오하이오주 허드슨
국적미국
연구 분야컴퓨터 과학, 수학, 논리학
직장프린스턴 대학교 (1929–1967)
캘리포니아 대학교 로스앤젤레스교 (1967–1995)
모교프린스턴 대학교
박사 지도 교수오즈월드 베블런
주요 업적람다 대수
단순 타입 람다 계산법
처치 인코딩
처치 정리
처치-클리네 서수
처치-튜링 명제
프레게-처치 존재론
처치-로서 정리
의도 논리
박사 학위 논문Alternatives to Zermelo's Assumption
박사 학위 논문 URLAlternatives to Zermelo's Assumption
박사 학위 취득 년도1927년
제자
박사 제자C. Anthony Anderson (1977)
Peter Andrews (1964)
George Alfred Barnard (1936)
William W. Boone (1952)
Martin Davis (1950)
William Easton (1964)
Alfred Foster (1930)
Leon Henkin (1947)
John George Kemeny (1949)
Stephen Cole Kleene (1934)
Simon B. Kochen (1959)
Maurice L'Abbé (1951)
Isaac Malitz (1976)
Gary R. Mar (1985)
Michael O. Rabin (1957)
Nicholas Rescher (1951)
Hartley Rogers, Jr (1952)
J. Barkley Rosser (1934)
Dana Scott (1958)
Norman Shapiro (1955)
Raymond Smullyan (1959)
Alan Turing (1938)

2. 생애

알론조 처치는 워싱턴 D.C.에서 태어나 1924년 프린스턴 대학교에서 학사 학위를, 1927년 같은 대학교에서 오스왈드 베블렌의 지도 아래 박사 학위를 받았다. 이후 시카고 대학교에서 잠시 강사로 재직하다 국립 연구 펠로우십을 받아 하버드 대학교, 괴팅겐 대학교, 암스테르담 대학교 등에서 연구했다.[10]

1929년 프린스턴 대학교 교수가 된 처치는 1936년 람다 대수에 관한 논문을 발표, "결정 불가능한 문제"가 존재함을 보였다. 이는 앨런 튜링정지 문제보다 앞선 연구 결과였다. 훗날 처치와 튜링은 람다 셈법과 튜링 기계가 본질적으로 같은 능력을 가짐을 증명했다.

1967년까지 프린스턴 대학교에서, 1967년부터 1990년까지 캘리포니아 대학교 로스앤젤레스(UCLA)에서 교수로 재직하며 스티븐 콜 클리니, 존 버클리 로서, 앨런 튜링, 레온 헨킨, 데이비드 스콧 등 수많은 제자를 양성했다. 1995년 사망하여 프린스턴 묘지에 안장되었다.[19][20]

2. 1. 유년 시절과 교육

워싱턴 D.C.에서 태어난 알론조 처치는 1924년 프린스턴 대학교에서 학사 학위를, 1927년 같은 대학교에서 오스왈드 베블렌의 지도 아래 박사 학위를 받았다.[5] 그의 아버지는 치안 판사[5]이자 컬럼비아 특별구 지방 법원 판사였던 새뮤얼 로빈스 처치였다.

어릴 적 처치는 공기총 사고로 부분적인 시력 상실을 겪었다.[7] 시력 저하로 인해 아버지가 직위를 잃은 후, 가족은 버지니아로 이사했다. 그는 삼촌의 도움으로 코네티컷주 리지필드에 있는 사립 리지필드 남자 학교에 다녔으며, 1920년 졸업 후 프린스턴 대학교에 입학했다.[8]

프린스턴 대학교에서 그는 뛰어난 학생이었고, 1924년 로렌츠 변환에 관한 첫 논문을 발표했다.[9] 같은 해 수학 학사 학위를 받고, 대학원에 진학하여 3년 만에 수학 철학 박사 학위를 받았다.

1925년에는 메리 줄리아 쿠친스키와 결혼하여 세 자녀, 알론조 주니어(1929년생), 메리 앤(1933년생), 밀드레드(1938년생)를 두었다.

박사 학위 취득 후, 시카고 대학교에서 잠시 강사로 재직했다.[10] 1927년부터 2년간 국립 연구 펠로우십을 받아 하버드 대학교(1927–1928), 괴팅겐 대학교암스테르담 대학교(1928-1929)에서 연구했다.

2. 2. 학문적 경력

워싱턴 D.C.에서 태어나 1924년 프린스턴 대학교에서 학사 학위를 받고, 1927년 같은 대학원에서 오스왈드 베블렌의 지도하에 박사 학위를 받았다.[5] 그 후 하버드 대학교, 게오르크 아우구스트 대학교 괴팅겐 등에서 연구원으로 있다가 1929년 프린스턴 대학교 수학과 교수가 되었다.[10]

1936년 람다 대수에 관한 논문을 발표하여 "결정 불가능한 문제"가 존재함을 보였는데, 이는 앨런 튜링정지 문제 증명보다 앞선 것이었다. 훗날 처치와 튜링은 람다 셈법과 튜링 기계가 본질적으로 동일한 계산 능력을 가짐을 보였다.

1967년까지 프린스턴 대학교에서 철학과 수학을 가르쳤으며, 1967년부터 1990년까지 캘리포니아 대학교 로스앤젤레스(UCLA)에서 철학 및 수학 교수로 재직했다.[11] 스티븐 콜 클리니, 존 버클리 로서, 앨런 튜링, 레온 헨킨, 데이비드 스콧 등 많은 제자를 길러내어 미국 논리학계에 큰 영향을 주었다. 프린스턴 대학교 강의 노트를 바탕으로 쓰인 수리 논리학 교과서는 이 분야의 고전으로 꼽힌다.

1962년 스톡홀름에서 열린 국제 수학자 회의(ICM)에서 전체 회의 연설을 했다.[12] 1969년 케이스 웨스턴 리저브 대학교[13], 1985년 프린스턴 대학교[14], 1990년 뉴욕 주립 대학교 버팔로[15]에서 명예 과학 박사 학위를 받았다.

1966년 영국 학사원(FBA)의 통신 회원, 1967년 미국 예술 과학 아카데미, 1978년 미국 국립 과학원 회원으로 선출되었다.[17]

2. 3. 개인적인 삶과 죽음

알론조 처치는 1925년에 메리 줄리아 쿠친스키와 결혼하여 세 자녀를 두었다. 알론조 주니어(1929년생), 메리 앤(1933년생), 밀드레드(1938년생)이다.[6] 그는 평생 장로교 신자였다.[18] 1995년 8월 11일 92세의 나이로 사망하여 프린스턴 묘지에 묻혔다.[19][20]

3. 주요 업적

알론조 처치는 수리논리학 분야에 지대한 공헌을 한 학자로, 다음과 같은 주요 업적을 남겼다.


  • 처치의 정리 증명: 임의의 일차 논리 이론에서 명제의 참/거짓을 판별하는 결정 절차가 존재하지 않는다는 결정 문제가 결정 불가능함을 증명했다.[21]
  • 처치-튜링 명제 제창: 람다 계산법과 튜링 머신이 계산 능력 면에서 동등하며, 계산 가능한 모든 문제는 이 두 가지 방법으로 해결할 수 있다는 명제를 제시했다.
  • 기호 논리학 저널 창립 편집: 1936년부터 1979년까지 43년간 기호 논리학 저널의 서평 편집을 맡아 수리논리학 발전에 기여했다.
  • ''수학 논리 입문'' 저술: 수학 논리 분야의 저명한 교과서인 ''수학 논리 입문''을 저술하여 후학 양성에 힘썼다.[22]
  • 무작위 시퀀스 이론에 기여: 무작위 시퀀스 이론 연구에 공헌했다.[27]


이 외에도 공리적 집합론, 형 이론, 내포 논리에 관한 업적이 있으며, 수리 논리학 분야 외에도 미분 방정식론과 라플라스 변환에 관한 연구도 있다. 그의 업적은 명세서로부터 컨트롤러 구현을 자동 생성하는 연구에도 영향을 주었다.[24]

ACM SIGLOG, 유럽 이론 컴퓨터 과학 협회(EATCS), 유럽 컴퓨터 과학 논리 협회(EACSL), 쿠르트 괴델 협회(KGS)는 논리와 계산에 대한 그의 뛰어난 공헌을 기리기 위해 2015년 알론조 처치 상(Alonzo Church Award)을 제정했다. 이 상은 지난 25년 이내에 출판된 분야에 대한 뛰어난 공헌을 대상으로 하며, 튜링상, 파리 카넬라키스 상, 괴델상과 같은 다른 주요 상으로 아직 인정을 받지 못한 경우에 수여된다.[25][26]

3. 1. 람다 대수

1936년 람다 대수에 관한 논문을 썼고, 여기서 "결정 불가능한 문제"가 존재함을 보였다. 이것은 앨런 튜링정지 문제보다 앞선 것이다. 훗날 처치와 튜링은 람다 셈법과 튜링 기계가 본질적으로 같은 능력을 가지고 있다는 것을 보였다.[23]

람다 셈법에 관한 처치의 연구는 리스프(LISP)계열의 프로그래밍 언어뿐 아니라 일반적인 함수형 언어 전반에 큰 영향을 끼쳤다. 처치 인코딩은 그의 이름을 따서 명명되었다.

처치는 다음과 같은 업적을 남겼다.

  • 람다 계산법의 발명.
  • 람다 계산법을 사용하여 페아노 산술이 결정 불가능하다는 것을 증명했다.[11]
  • 처치-로저 정리
  • 처치-튜링 명제 제창
  • 1차 술어 논리의 결정 불가능성 증명

3. 2. 처치-튜링 명제

람다 대수에 관한 처치의 연구는 리스프(LISP) 계열의 프로그래밍 언어뿐 아니라 일반적인 함수형 언어 전반에 큰 영향을 끼쳤다. 처치는 처치-튜링 명제로 알려지게 된 것을 명확히 했다.[21]

람다 계산법은 1936년 논문에서 등장했는데, 이 논문에서 "결정 불가능한 문제"가 존재함을 보였다. 이는 앨런 튜링정지 문제보다 앞선 것이다. (튜링의 경우, 기계적인 방법으로 풀 수 없는 문제가 존재한다는 것을 증명했다.) 처치의 연구를 접한 튜링은 그해 늦게 프린스턴에 입학하여 처치 아래에서 박사 학위를 받았다.[23] 처치와 튜링은 람다 계산법과 튜링의 정지 문제에 사용된 튜링 머신이 능력면에서 동등하다는 것을 보여주었고, 이어서 다양한 대안적인 "계산을 위한 기계적 프로세스"를 입증했다. 이로 인해 처치-튜링 명제가 탄생했다.

처치 인코딩은 그의 이름을 따서 명명되었다.

3. 3. 처치의 정리

임의의 일차 논리 이론에서 명제의 진실성을 결정하는 결정 절차를 요구하는 결정 문제가 결정 불가능하다는 것을 증명했다. 이것은 처치의 정리로 알려져 있다.[21]

3. 4. 『기호 논리학 저널』 편집

처치는 1936년부터 1979년까지 43년 동안 기호 논리학 저널의 논평 부문 편집자로 일했다.[21] 그가 편집한 논문의 양은 방대했으며, 이는 그의 평생 과업이라 할 수 있었다. 1967년 프린스턴 대학교에서 캘리포니아 대학교 로스앤젤레스 캠퍼스로 옮겼는데, 프린스턴 대학교가 논평 편집에 대한 지원을 중단했기 때문이라고 알려져 있다.

1936년에 편찬한 『기호 논리학 문헌표』[3]는 당시까지 출판된 거의 모든 논리학 문헌을 망라하여 주석을 단 것으로, "논리학 문헌의 박물학자"라고도 불리는 처치의 면모를 보여준다.

4. 철학적 업적

알론조 처치는 고틀로프 프레게의 철학적 아이디어를 바탕으로 프레게-처치 존재론을 창안한 것으로 알려져 있다.[28] 그의 논리적 방법론, 명목론에 대한 철학적 비판, 실재론 옹호, 의미론에 대한 결론으로 이끄는 논증, 그리고 프레게와 러셀내포적 논리에 대한 상세한 구성은 그를 이 시대 가장 중요한 철학자 반열에 올려놓기에 충분하다는 평가를 받는다.[28]

5. 영향

1936년 람다 대수에 관한 논문을 썼고, 여기서 "결정 불가능한 문제"가 존재함을 보였다. 이것은 앨런 튜링정지 문제보다 앞선 것이다. (튜링의 경우, 기계적인 방법으로 풀 수 없는 문제가 존재한다는 것을 증명했다.) 훗날 처치와 튜링은 람다 셈법과 튜링 기계가 본질적으로 같은 능력을 가지고 있다는 것을 보였다.[11]

람다 셈법에 관한 처치의 연구는 리스프(LISP)계열의 프로그래밍 언어뿐 아니라 일반적인 함수형 언어 전반에 큰 영향을 끼쳤다.[11]

알론조 처치는 학문적 경력 동안 31명의 박사 과정을 지도했다.[11] 피터 B. 앤드루스, 조지 A. 바나드, 데이비드 벌린스키, 윌리엄 W. 분, 마틴 데이비스, 알프레드 L. 포스터, 레온 헨킨, 존 G. 케메니, 스티븐 C. 클리니, 사이먼 B. 코헨, 모리스 라베, 게리 R. 마, 마이클 O. 라빈, 니컬러스 레셔, 하틀리 로저스 주니어, J. 바클리 로서, 다나 스콧, 레이먼드 스멀리언, 앨런 튜링 등이 그 제자들로, 이들은 수학, 컴퓨터 과학 및 기타 학문 분야에서 뛰어난 경력을 쌓았다.[29]

처치는 직접 지도한 학생들 외에도 다른 수학자 및 컴퓨터 과학자들에게도 큰 영향을 미쳤다. 하스켈 커리는 처치의 아이디어를 커링 개념으로 확장했으며, 그의 교재 중 하나인 『수리 논리학 입문』(1944년 초판)에 대해 "저자의 일반적인 작업 특징을 나타내는 꼼꼼한 정밀성으로 작성되었다"고 언급했다.[30]

6. 저서


  • 앨런조 처치, 《수학 논리학 입문》(Introduction to Mathematical Logic) (1944)[31]
  • 앨런조 처치, 《람다 변환의 계산법》(The Calculi of Lambda-Conversion) (1941)[32]
  • 앨런조 처치, 《기호 논리학의 서지, 1666–1935》
  • C. 앤서니 앤더슨과 마이클 젤레니 (eds.), 《논리, 의미 및 계산: 앨런조 처치를 기념하는 에세이》(Logic, Meaning and Computation: Essays in Memory of Alonzo Church)
  • 타일러 버지 및 허버트 엔더턴 (eds.), 《앨런조 처치의 전집》(The Collected Works of Alonzo Church) (2019)[33]
  • 〈초등 정수론의 풀 수 없는 문제〉, 《미국 수학 저널》, 58권, 1936, 345-363쪽.
  • 〈결정 문제에 대한 노트〉, 《기호 논리학 저널》, 1권, 1936, 40-41쪽.
  • 〈기호 논리학의 서지〉, 《기호 논리학 저널》 1권, 1936, 121-218쪽; 3권, 1938, 178-212쪽. 개정 및 확장판은 ASL에서 재발행, 1985.
  • 《람다 변환의 계산법》, 프린스턴 대학교 출판부, 1941.
  • 《수학 논리학 입문, 제 1부》, 프린스턴 대학교 출판부, 1944; 개정 및 확대판, 1956.

참조

[1] 서적 Engineering Trustworthy Software Systems. SETSS 2018 http://researchopen.[...] Springer Nature|Springer 2019
[2] 간행물 Alonzo Church https://plato.stanfo[...] Metaphysics Research Lab, Stanford University 2022-04-14
[3] 웹사이트 OBITUARY: Alonzo Church https://www.independ[...] 2021-05-24
[4] 서적 The selected works of A.M. Turing : his work and impact https://www.worldcat[...] Elsevier 2012
[5] 학술지 A History of the Office of Justice of the Peace in the District of Columbia https://www.jstor.or[...] 1902
[6] 서적 College Life in the Old South University of Georgia Press
[7] 웹사이트 Alonzo Church https://builds.openl[...] 2022-12-19
[8] 문서 The Ridgefield School http://jackfsanders.[...]
[9] 학술지 Uniqueness of the Lorentz Transformation
[10] 웹사이트 An early history of computing at Princeton https://paw.princeto[...] 2020-04-19
[11] 웹사이트 Alonzo Church: Life and Work https://www.math.ucl[...] 2022-04-14
[12] 서적 Proceedings of the International Congress of Mathematicians
[13] 웹사이트 Honorary degrees awarded by CWRU http://www.case.edu/[...] 2004-02-06
[14] 웹사이트 Honorary Degrees http://www.princeton[...] 2009-12-30
[15] 웹사이트 The Honorary Degree Conferral of Doctor of Science to Alonzo Church, 1990 http://libweb1.lib.b[...]
[16] 웹사이트 Professor Alonzo Church FBA https://www.thebriti[...]
[17] 웹사이트 Alonzo Church '24 *27 https://paw.princeto[...] 2022-04-14
[18] 웹사이트 Introduction Alonzo Church: Life and Work https://www.math.ucl[...] 2012-06-06
[19] 뉴스 Alonzo Church, 92, Theorist Of the Limits of Mathematics https://www.nytimes.[...] 1995-09-05
[20] 웹사이트 Undecidability of First-Order Logic https://www.cs.nmsu.[...]
[21] 학술지 An unsolvable problem of elementary number theory
[22] 서적 Introduction to Mathematical Logic Princeton University Press 1996
[23] 웹사이트 Alonzo Church https://blogs.prince[...] 2014-11-26
[24] 서적 Lecture Notes in Computer Science Springer International Publishing
[25] 뉴스 Alonzo Church Award https://www.eatcs.or[...]
[26] 웹사이트 Alonzo Church Award for Outstanding Contributions to Logic and Computation 2019 – ACM Special Interest Group on Logic and Computation https://siglog.acm.o[...]
[27] 학술지 On the concept of a random sequence https://projecteucli[...] 1940
[28] 문서 Harv Anderson 1998
[29] 웹사이트 Mathematics Genealogy Project http://genealogy.mat[...] 2010-08-12
[30] 웹사이트 Alonzo Church - Biography https://mathshistory[...]
[31] 학술지 Review: ''Introduction to Mathematical Logic'' by Alonzo Church https://www.ams.org/[...]
[32] 학술지 Review: ''The Calculi of Lambda-Conversion'' by Alonzo Church https://www.ams.org/[...]
[33] 서적 The Collected Works of Alonzo Church https://mitpress.mit[...] MIT Press 2019-04-23



본 사이트는 AI가 위키백과와 뉴스 기사,정부 간행물,학술 논문등을 바탕으로 정보를 가공하여 제공하는 백과사전형 서비스입니다.
모든 문서는 AI에 의해 자동 생성되며, CC BY-SA 4.0 라이선스에 따라 이용할 수 있습니다.
하지만, 위키백과나 뉴스 기사 자체에 오류, 부정확한 정보, 또는 가짜 뉴스가 포함될 수 있으며, AI는 이러한 내용을 완벽하게 걸러내지 못할 수 있습니다.
따라서 제공되는 정보에 일부 오류나 편향이 있을 수 있으므로, 중요한 정보는 반드시 다른 출처를 통해 교차 검증하시기 바랍니다.

문의하기 : help@durumis.com